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In this paper, a method is proposed for modelling large de#ection beam response
involving multiple vibration modes. Signi"cant savings in computational time can be
obtained compared with the direct integration non-linear "nite element method. The
de#ections from a number of static non-linear "nite element test cases are transformed into
modal co-ordinates using the modes of the underlying linear system. Regression analysis is
then used to "nd the unknown coupled non-linear modal sti!ness coe$cients. The inclusion
of "nite element derived modal masses, and an arbitrary damping model completes the
governing non-linear equations of motion. The response of the beam to excitation of an
arbitrary nature may then be found using time domain numerical integration of the reduced
set of equations. The work presented here extends upon the work of previous researchers to
include non-linearly coupled multi-modal response. The particular bene"ts of this approach
are that no linearization is imposed, and that almost any commercial "nite element package
may be employed without modi"cation.

The proposed method is applied to the case of a homogeneous isotropic beam. Fully
simply supported and fully clamped boundary conditions are considered. For the free
vibration case, results are compared to those of previous researchers. For the case of
steady-state harmonic excitation, results are compared with the direct integration non-linear
"nite element method using ABAQUS. In all cases, excellent agreement is obtained.

( 2001 Academic Press
1. INTRODUCTION

The surface panels of modern high-speed aircraft are subjected to high-intensity acoustic
loading from sources such as jet e%ux and turbulent #uid #ow. Frequently this high-
intensity noise environment is combined with elevated panel temperatures, caused by
aerodynamic heating and jet exhaust impingement. Preliminary concept evaluations of
aircraft such as the National Aerospace Plane (NASP) indicate that at some points on the
structure, the sound pressure levels will be in the range 170}180 dB (relative to 20 lPa), with
panel temperatures up to 17703C [1]. The issue of acoustic fatigue is also becoming
particularly prevalent around the ordinance cavities of high-speed military aircraft, where
the acoustic excitation spectrum is a combination of broadband random noise, and high
level harmonic &&tones'' caused by the oscillation of air inside the cavity [2]. The case of an
isotropic beam can be regarded as a simpli"ed case of the more complex structural models
used in the design of high-speed aircraft components. Because of this, considerable e!ort has
been directed into developing models and solution approaches for the non-linear beam &&test
bed'', which may eventually be applied to more general structures.
0022-460X/01/240601#24 $35.00/0 ( 2001 Academic Press
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If the transverse displacement response of a beam that is axially constrained at the
supports is su$ciently large that the maximum de#ection at the center is of the order of the
panel thickness, then the inherent non-linear sti!ness characteristics of the beam will have
a signi"cant e!ect. The non-linear dynamic behavior may be attributed to the stretching of
the beam in the axial direction as it de#ects. Simple linear beam theory is no longer
applicable in such a situation.

There has been an enormous amount of work published in the study of non-linear beam
vibration. It should be noted that only a few of the many authors in this subject are
mentioned here. Of the analytical single-degree-of-freedom methods, the accepted
benchmark for ideal non-linear simply supported beam behavior is the work of
Woinowsky-Krieger [3], which uses the elliptic integral function to evaluate the equation of
motion. Both Raju et al. [4], and later Lewandowski [5] have applied the Rayleigh}Ritz
technique to the non-linear beam vibration problem. The latter work utilizes an iterative
approach to determine the natural frequencies and a non-linear mode shape. The work of
Reh"eld [6, 7] is another notable analytical method for the analysis of non-linear beam
vibration. This method is applicable to cases of free vibration, and also forced vibration
where the driving excitation is harmonic and spatially arranged so as to only drive a single
mode. This method is based around a perturbation procedure.

The work of Reh"eld was extended using a semianalytical approach by Ward [8]. Static
displacement information derived from a displacement "nite element model is utilized in
a manner that is paralleled by the present work, but was only applied to a single mode.
Another single mode, semianalytical technique is that of Maymon [9]. Rather than using
a perturbation technique, this work described a fundamental mode expansion of an
arbitrary non-linear structure. A single unknown cubic modal non-linear sti!ness
coe$cient was found by considering the non-linear response to static loading. The stress
response was found by treating the stress modes of the structure in a similar manner. The
response to random temporal excitation was found using an equivalent linearization
scheme. The work presented here extends upon the work of Maymon to include multi-mode
vibration in a situation where the form of the non-linear modal couplings is not known
a priori. A similar use of static "nite element displacement data in dynamic analysis has been
proposed by Knight [10], although in this instance a multi-mode rather than a single mode
approach is adopted. For a consideration of step-impulse loading, a set of reduced basis
vectors is formed using the free vibration modes of the underlying linear system, along with
a non-linear static solution for the speci"ed step loading under consideration. By contrast
the present approach uses only linear free vibration modes as basis vectors, for the
consideration of harmonic excitation.

One of the most recent works which employ a similar philosophy to the method
presented here is that of Muravyov [11] and Muravyov et al. [12]. This approach utilizes
a multi-degree-of-freedom modal co-ordinate system. The unknown non-linear sti!ness
coe$cients in modal space are then found by solving a set of prescribed displacement
problems using proprietary "nite element software. The appropriate choice of prescribed
displacement solutions allows the unknown non-linear coe$cients to be solved for exactly. By
contrast the present approach utilizes a set of prescribed force non-linear static solutions,
and a regression analysis. This avoids any potential numerical sensitivity problems that
may be associated with using a prescribed displacement solution. In reference [12], two
di!erent stochastic linearization schemes are compared for the case of a beam-like problem.

Of the numerically based methods applicable to non-linear vibration analysis, by far the
most research e!ort has been directed towards the development of the "nite element
method. Sarma and Varadan [13] have used a Lagrangian "nite element formulation.
Singh et al. [14] have also obtained excellent results by using an iterative process to exactly
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satisfy the axial and out-of-plane equations. Much of the work of Mei and his associates has
also utilized the "nite element method. Earlier work [15, 16] assumed simple harmonic
response behavior and neglected longitudinal displacement and inertia in the "nite element
formulation. The work of Mei and Decha-Umphai [17] included the e!ect of transverse
displacement and inertia, but simpli"ed the strain displacement relationship by using
a linearizing function. The more up-to-date works of Shi and Mei [18], and Shi et al. [19]
have considered the simply supported beam problem as part of the validation of
a formulation developed for laminated composite plates. The "nite element equations of
motion are expanded in terms of linear modal co-ordinates, then numerically integrated in
the time domain. The results show excellent agreement with reference [3] (see Table 2),
however, these methods require special "nite element codes, or adapted commercial codes.

If the time domain integration technique is used in conjunction with the "nite element
method for &&real'' problems, then for computational e$ciency a transformation to
a reduced basis co-ordinate system is arguably essential [20]. The importance of reducing
the system degree of freedom from that of typical "nite element models is evidenced by
Green and Killey [21], where the CPU time required for non-linear direct integration
Monte Carlo analysis of "nite element models is prohibitively large.

In this work an alternative approach to that of a &&"rst principles'' derivation and solution
of the system equations of motion is proposed. The output from a series of static "nite
element &&test cases'' is transformed into modal co-ordinates using the mode shapes of the
underlying linear system. Regression analysis is then performed in order to extract the
non-linear sti!ness coe$cients in the modal co-ordinate system. Both direct and coupling
coe$cients may be identi"ed. Time domain numerical integration is then applied to the
non-linear modal equations of motion, thus "nding the response of the beam to any
excitation time history. The method is an approximation, and is &&simpli"ed'' from the point
of view that considerations of the non-linear "nite element formulation and solution are
handled by the proprietary "nite element code, and are not dealt with explicitly by the
method. When considering reduced basis methods such as the one proposed here, a number
of di!erent forms of reduced basis vectors may be used. In this work, the normal modes of
the underlying linear system were chosen as basis vectors. Normal modes were chosen, as
the practicing engineer will be more familiar with their use, they may be readily extracted in
the appropriate form by using proprietary "nite element software, and they may be
measured experimentally, together with modal damping information [22].

The proposed method di!ers from many existing &&"rst principles'' formulations in the fact
that proprietary "nite element packages may be used without modi"cation to the code. An
autonomous program post-processes the output from these codes. Signi"cant savings in
computational time compared to standard direct integration routines in commercial "nite
element packages can be obtained without sacri"cing the #exibility of the large-scale
packages. The derivation that follows is that for an isotropic beam, but it is envisaged that
with re"nement the method will be expandable to include thermally post-buckled plates
and built-up structures such as sti!ened panels. The approach will be demonstrated for an
initially unstressed beam under free vibration and forced harmonic vibration. Results will
be compared with other theories, and with the direct "nite element integration technique.

2. FORMULATION

2.1. MODAL TRANSFORMATION

Consider the case of an initially straight, geometrically non-linear beam with mass
proportional damping subject to forced vibration. The assembled N degree of freedom "nite
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element equation of motion in physical co-ordinates for forced vibration in the transverse
direction is of the form

[MMwK (x, tN#a[M]w5 M(x, t)N#[K
L
]Mw(x, t)N#[K

NL
(w(x, t))]Mw(x, t)N"MF(x, t)N. (1)

Here Mw(x, t)N is the transverse de#ection vector, [M] is the assembled mass matrix, a is the
Rayleigh coe$cient for linear mass proportional damping, [K

L
] is the assembled linear

sti!ness matrix, [K
NL

] is the assembled non-linear sti!ness matrix where the sti!ness is
dependent upon displacement, and MF(x, t)N is the external force vector. The overdots imply
di!erentiation with respect to time. The spatial and temporal components of the beam
motion can be separated by expressing the equations of motion in terms of modal
amplitudes as

Mw(x, t)N"
N
+
r/1

M/(x)N
r
p (t)

r
"[/]Mp(t)N. (2)

Here Mp (t)N is a time-dependent vector of modal amplitudes, and [/] is a time-independent
modal matrix of the N modes M/ (x)N

r
, r"1, 2,2,N of the underlying linear system, which

may be obtained by solving the eigenvalue problem for undamped free vibration:

[K
L
]M/(x)N

r
"u2

Lr
[M]M/(x)N

r
r"1, 2,2,N. (3)

Here u
Lr

is the linear natural frequency of mode &&r''. The number of degrees of freedom
required to model the beam with reasonable accuracy can be reduced by considering only
those modes NR@N with natural frequencies in the frequency range of interest, or which
are considered important in the response. In this case, the modal matrix [/] is reduced to
dimension (N]NR) and the vector of modal amplitudes Mp (t)N to dimension (NR]1).
Substituting the truncated modal expansion into the system equations of motion and
pre-multiplying by [/]T yields

[/]T#[M][/]MpK (t)N#a[/]T[M][/]Mp5 (t)N#[/]T[K
L
][/]#/T[K

NL
][/]Mp(t)N

"[/]TMF(t)N. (4)

Upon completion of the modal transformation the new system equations of motion in
modal space are

[m]MpK (t)N#a[m]Mp5 (t)N#[k
L
]#[k

NL
]Mp(t)N"Mf(t)N. (5)

Here [m] is the modal mass matrix, [k
L
] is the linear modal sti!ness matrix and M f (t)N is the

modal force vector. It should be noted that all of the matrices in the modal equation of
motion are now diagonal apart from the non-linear sti!ness matrix [k

NL
], which may

contain cross-coupling terms and will be a function of Mp(t)N. The diagonalization of the
linear terms occurs because of the orthogonality of the modes of the linear system.

2.2. REGRESSION ANALYSIS USING THE STATIC FINITE ELEMENT METHOD

If the beam is considered in a static sense only, with velocity and acceleration terms set to
zero, and all of the geometric and material properties being time invariant, then equation (5)
may be simpli"ed as

[k
L
]#[k

NL
]Mp(t)N"Mf(t)N. (6)
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The left-hand side of equation (6) may be regarded as a sti!ness restoring force, with
a linear and a non-linear component. The right-hand side of equation (6) may be regarded
as a statically applied load. It follows that if there exists a set of applied static loads, and
corresponding displacements, then the unknown sti!ness coe$cients which relate the
applied load to the resultant displacement may be determined using regression analysis.
The set of applied loads and corresponding displacements are denoted here as &&test cases'',
and may be solved for using a proprietary "nite element software package. The following
section describes a procedure for generating these test cases so that any subsequent
regression analysis procedure for determining sti!ness coe$cients will be e!ective.

2.3. STRATEGY FOR GENERATING FINITE ELEMENT NON-LINEAR TEST CASES

For the case of a two-dimensional beam, all of the static non-linear "nite element test
cases are in the form of a non-uniform transverse distributed loading upon the beam. The
transverse de#ection corresponding to a particular loading may be found using proprietary
"nite element software. The applied load and the resultant displacement values may then be
transformed into modal space, allowing them to be used as exemplars in a regression
analysis.

When generating a static non-linear "nite element test load case, two factors are
important. The "rst is the spatial distribution of the load over the surface of the "nite
element model. Variation in the spatial characteristics of a load will result in a di!erent level
of modal participation in the load following the transformation to modal space. The second
factor is the overall magnitude of the "nite element loading. Varying the overall magnitude
of the "nite element loading will result in the inherent displacement-dependent non-
linearities in the structure being exercised to a greater or lesser extent.

In the absence of a priori information about the exact nature of the non-linear sti!ness, it
must be assumed that non-linear cross-couplings are signi"cant. Therefore, a load that is
applied purely in the shape of one mode (linear force appropriation) may induce
a displacement response that is a combination of more than one mode. In other words, the
inclusion of non-linear cross-couplings into the non-linear model e!ectively extends the
regression analysis problem from that of a curve "t to a multi-dimensional surface "t. For
accurate identi"cation of the modal non-linear sti!ness coe$cients, this multi-dimensional
space needs to be adequately "lled with discrete data points. Considering test load cases
that are a sum of a number of weighted mode shapes has ful"lled this requirement. For
a given test case

MFN"a
1
M/N

1
#a

2
M/N

2
#2#a

NR
M/N

NR

"

NR
+
r/1

a
r
M/N

r
. (7)

Here the a
r
are scalar weighting factors for each mode shape, and MFN is a vector of discrete

loads in "nite element nodal space. The same loads in modal space may be calculated using

M(f )N"[U]TMFN. (8)

The values of the coe$cients a
r
determine the position of the resultant modal force data

point in the multi-dimensional modal force vector space. Once the relevant test load cases
have been solved using proprietary non-linear "nite element software, the resulting discrete
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data in "nite element nodal space is transformed to modal space by solving

MwN"[U]MpN. (9)

The discrete data points are included in a global data set, so that all of the possible modal
cross-couplings between any two modes may be considered.

2.4. CURVE FITTING THE STIFFNESS RESTORING FORCE

Upon completion of the static non-linear test load cases, and their transformation to
modal space, one has load displacement data sets in the form of vectors of applied modal
forces, and corresponding vectors of modal displacements. In order to curve "t the sti!ness
restoring force, an ordinary polynomial approach is adopted. In each mode, the restoring
force is approximated by a series of powers of modal displacements. Using the sti!ness
restoring force for some mode &&r'' as an example, gives
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Here p
s
, p

t
and p

u
are the respective modal displacements of arbitrary modes, and A(k,j,l)

r
are

the unknown sti!ness coe$cients. The caret is associated with "tted rather than exact
values. The value of the linear modal sti!ness in each mode may be deduced from the linear
mode shape/natural frequency analysis. For mode number r
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r
. (11)

This term can then be moved to the left-hand side of equation (10), thus decreasing the size
of the series by one:

f
r
(p

r
, p

s
, p

t
)!A(1,0,0)

r
p
r
+fK

r
(p

r
, p

s
, p

t
)
NL

" +
j/0

j`k`l)3
+
k/0

+
l/0

A(j,k,l)
r

pj
r
pk
s
pl
t

jO1. (12)

The approximating function is, therefore, that of the non-linear sti!ness restoring force.
Note that for the majority of instances of geometric non-linearity, polynomials of up to
third order have been found to be su$cient to model the non-linear response. Also in cases
where the beam in question is symmetric about its centerline, then the steady-state and
quadratic terms may be omitted from the regression analysis.

A least-squares backward elimination technique [23] is used to "nd the coe$cients of the
signi"cant terms in the series for each mode, as well as to eliminate those terms from the
series which do not contribute signi"cantly to the overall response. For the purposes of
illustration, a two-mode (NR"2) approximation is described throughout this work,
although the method has been applied in instances with more than two modes without
modi"cation.

2.5. BACKWARD ELIMINATION TECHNIQUE

Consider that there are N¹ sets of data vectors. Each set consists of a vector of modal
displacements and a vector of modal forces. Each individual element in the modal force
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vector will be treated separately. Assume also that the linear modal sti!ness is known and
has been moved to the left-hand side of equation (10). If equation (12), which initially
contains all of the possible terms which may occur in the sti!ness restoring force
approximating function, is evaluated at all of the N¹ data points, then the results may be
represented in a matrix form as
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or using matrix shorthand notation as

Mf
r
N
NL

+Mf)
r
N
NL

"[D
r
]MA

r
N. (14)

Here Mf
r
N is an (N¹]1) vector containing the mode r non-linear sti!ness restoring force for

each of the data sets, MA
r
N is an (NA]1) vector containing all of the unknown sti!ness

coe$cients for each mode r. The matrix [D
r
] is an (N¹]NA) matrix, known as the design

matrix of the "tting problem for each mode r. Each column in the design matrix
corresponds to an evaluation of one model term in the series of equation (11), where the
coe$cients A(k,j,l)

r
have been factored into MA

r
N. Each row in the design matrix represents an

evaluation using one of the N¹ data sets available. The subscripts in brackets refer to the
test load case that the data value originated from. Note that for an accurate solution, N¹ is
greater than NR.

Pre-multiplying equation (14) by [D
r
]T yields the &&normal'' form of the least-squares

problem:

[D
r
]TMf)

r
N
NL

"[D
r
]T[D

r
]MA

r
N . (15)

At this stage of the backward elimination procedure, when all possible series terms have
been included in the model, there is a possibility of the normal matrix [D

r
]T[D

r
] being

singular or near to singular. In such a situation the normal equations are referred to as
being ill conditioned. For this reason the singular value decomposition technique is used in
the solution of the normal equations, rather than a traditional solution technique such as
Gauss}Jordan elimination. When used in this context, singular value decomposition (SVD)
is a technique for "nding the pseudo-inverse of a rectangular matrix, and hence for solving
systems of linear equations that are suspected to be ill conditioned. As such, SVD is the
method of choice for solving linear least-squares problems such as the ones encountered
here.

The SVD technique allows any (N¹]NA) matrix D with N¹'NA to be represented as
the product

[D
r
]"[U][W][V]T. (16)

Here [U] is an N¹]NA matrix representing a column orthogonal "ltered version of the
components in [D

r
], and [V] is an (NA]NA) orthogonal matrix. The matrix [W] is an

(NA]NA) diagonal matrix, where all of the diagonal elements are positive, and represent
the magnitudes or &&singular values'' of the components in [U]. Some of the diagonal
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elements in [W] may be zero in the case of a singular matrix, or near to zero in the case of
a near singular matrix. This indicates that some of the components in [U] do not contribute
signi"cantly to the characterization of [D

r
]. The decomposition may be &&"ltered'' to remove

the non-contributing components be setting 1/w
j
to zero in [W]~1 when equation (14) is

solved:

MA
r
N"[V][W]~1[U]TMf)

r
N
NL

. (17)

In the case of an ill-conditioned normal matrix [D
r
]T[D

r
], this approach will give &&sensible''

values for the coe$cients MA
r
N, although these values may not be exact in the strict algebraic

sense.
Having solved for all of the coe$cients MA

r
N, we can now "nd the contribution of each

term in the series of equation (14) to the overall response in an r.m.s. sense. The signi"cance
of the A(1,1)

r
term, for example, may be found by the ratio
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)
. (18)

Here the terms in the innermost double summation in the denominator are those terms that
have not yet been eliminated from the model. If the "tted model contains more terms than
are required to accurately model the system, then the non-signi"cant terms will have a small
ratio of contribution. The backward elimination technique proceeds by eliminating the
term in the series that contributes the least to the overall response. Once the least
contributing element has been identi"ed, the column corresponding to this model term is
removed for the design matrix [D

r
]. The curve "t procedure is then repeated with the model

order decreased by one. This process of elimination is repeated until some global
termination criterion is satis"ed.

The cumulative goodness of "t parameter, R2
T
, is used as the criterion for terminating the

backward elimination process:
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A perfect "t will have an R2
T

value of 1. If the cumulative goodness of "t is less than
a pre-selected threshold value, then the backward elimination procedure is terminated,
otherwise it will continue with a reduced model order. Upon termination of the backward
elimination loop, those terms still remaining in the series, plus the last term removed,
constitute the most parsimonious system model available under the present criterion. If the
threshold R2

T
value is set very close to 1, then there will be more terms retained in the series,

while a lower R2
T

threshold value (0)95 say) will yield a model with less terms (although that
model may be correspondingly less accurate).

If the backward elimination procedure exhausts all of the possible model terms, then the
mode in question is obviously a linear one, and no non-linear sti!ness terms are required. If
the backward elimination procedure terminates on the "rst iteration, then the model terms
encapsulated in the design matrix are not su$cient to accurately model the non-linear
restoring force, and more terms should be added. Once the optimum series for a particular
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non-linear modal restoring force has been identi"ed, the entire backward elimination
process is repeated for the next mode, until the entire multi-mode model has been identi"ed.

The inertial and damping terms are now included to complete the governing modal
equations of motion. The choice of damping model to be added at this point is arbitrary and
may be non-linear or experimentally derived, although linear mass proportional damping is
used here for the purposes of veri"cation. The non-linear dynamic behavior of the beam can
now be found for any form of excitation.

3. SIMULATION MODEL

In order to provide a validation of the proposed method for homogeneous, isotropic
beams, both free vibration and the response of to a harmonically varying, uniformly
distributed load will be considered. The geometric and material properties of the beam are
summarized in Table 1. The Finite Element code ABAQUS/Standard was used to model
the beam, with simply supported and fully clamped boundary conditions.

The "nite element model consisted of a mesh of 10 quadratic interpolating shear
deformable beam elements (ABAQUS B22). The use of such a mesh density allowed the "rst
two symmetric modes of the beam to be modelled with reasonable accuracy [18].

Following the formulation of the beam model, a linear mode shape/natural frequency
analysis was performed on the beam model using ABAQUS/Standard. For the simply
supported beam, the linear natural frequencies of the "rst two symmetric modes were
u

L1
"22)96 Hz, and u

L2
"206)4 Hz. For the clamped beam, the linear natural frequencies

of the "rst two symmetric modes were u
L1
"52)02 Hz, and u

L2
"280)6 Hz. The non-linear

dynamic modal model of the beam was then found by following the procedure of section 2,
using a total of nine static non-linear test cases for a two-mode model. The values of the
sti!ness coe$cients remaining after the regression analysis are given in Table 2 for the fully
simply supported beam, and Table 3 for the fully clamped beam.

4. UNDAMPED FREE VIBRATION

A good indication of the validity of the proposed approach, for a single mode
approximation of beam vibration behavior, may be obtained by considering the undamped
free vibration of the initially unstressed non-linear beam. The fundamental mode expansion
of the undamped beam equations of motion leads to the following Du$ng-type di!erential
equation:

m
1
pK
1
(t)#A(1,0)

1
p
1
(t)#A(3,0)

(1)
p
1
(t)3"0. (20)
TABLE 1

Material and geometric properties of the example beam

Length, ¸ 1 m
Thickness, a 0)01 m
Width, b 0)03 m
Mass density, o 7800 kg/m3
Tensile elastic modulus, E 200]109 Nm2
The Poisson ratio, l 0)3



TABLE 2

Sti+ness coe.cients for the two-mode fully simply
supported beam model

A(1,0)
1

1)217306]104

A(3,0)
1

3)647660]108

A(0,1)
2

9)839762]105

A(0,3)
2

3)610174]1010

TABLE 3

Sti+ness coe.cients for the two-mode fully clamped beam
model

A(1,0)
1

4)956373]104

A(3,0)
1

3)509080]108

A(2,1)
1

!9)074525]108

A(1,2)
1

3)640643]109

A(0,3)
1

!2)660977]109

A(0,1)
2

1)599697]106

A(0,3)
1

2)779785]1010

A(1,2)
1

!8)119428]109

A(2,1)
1

3)645975]109

A(3,0)
1

!2)975476]108
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The values of A(1,0)
1

and A(3,0)
1

are given in Tables 2 and 3 for the fully simply supported
beam and fully clamped beam respectively. This equation may be solved in terms of the
ratio of the non-linear natural frequency, u

NL
, corresponding to vibration at large

amplitudes, to the linear natural frequency, u
L
, corresponding to vibration at very small

amplitudes. The exact solution for the frequency ratio was obtained by using the elliptic
integral approach [24] as used by Woinowsky-Krieger [3]. The elliptic integral approach
for free vibration is applicable to a single-mode approximation of the beam vibration, where
non-linear cross-couplings are assumed to be negligible and thus is only an approximation
in the case of the fully clamped beam. Table 4 compares the frequency ratio of the
fundamental mode of the simply supported beam at various amplitudes calculated using
di!ering methods by various researchers. The values are given at various normalized
half-amplitudes, where=

0
is the half-amplitude of the beam center, and m( is the radius of

gyration of the beam cross-section. A very brief description of the methods used by some of
these investigators is given in the introduction. It can be seen from Table 4 that the results
obtained using the present method are very similar to the benchmark values of
Woinowsky}Krieger [3], even though the sti!ness coe$cients are obtained using the
combined modal/"nite element approach rather than an analytical approach. Table 5
compares the frequency ratio of the fundamental mode of the clamped beam at various
amplitudes calculated using di!ering methods by various researchers. Again the results are
comparable with those of other researchers.



TABLE 4

Natural frequency ratios of the simply supported beam from various formulations

=
0
/m 1)0 3)0 5)0

Present work 1)0896 1)6246 2)3480
Woinowsky}Krieger [3] 1)0892 1)6257 2)3501
Mei [15, 16] 1)0613 1)4617 2)0378
Raju et al. [4] 1)0897 1)6394 2)3848
Lewandowski [5]
Sarma and Varadan [13] 1)1180 1)8028 2)6926
Mei and Decha-Umphai [17] 1)0888 1)6022 2)2544
Without ELDI*
Mei and Decha-Umphai [17] 1)0613 1)4617 2)0378
with ELDI*
Singh et al. [14] 1)0892 1)6257 2)3502
Shi et al. [19] 1)0892 1)6258 2)3506

*E!ects of longitudinal deformation and inertia.

TABLE 5

Natural frequency ratios of the clamped beam from various formulations

=
0
/m 1)0 3)0 5)0

Present Work 1)0206 1)1967 1)4220
Shi and Mei [18] 1)0221 1)1842 *

Singh et al. [4] 1)0221 1)1825 1)4474
Lewandowski [5] 1)0222 1)1833 1)4476
Evensen [25] 1)0222 1)1853 1)4577
Sarma and Varadan [13] 1)0295 1)2377 1)5659
Azrar et al. [26] 1)0222 1)1831 1)4488
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5. DAMPED FORCED VIBRATIONS*HARMONIC EXCITATION

In this section, the ability of the reduced two-mode model to yield accurate responses of
the beam to a harmonically varying distributed load is considered. As a means of
illustrating the method, the response to a number of load time histories were analyzed using
time domain numerical integration. For all of the cases the sinusoidal load time history was
discretized such that there were at least 60 sampling points per cycle of excitation. The same
time history was used for both the reduced modal method, and the direct "nite element
approach. This meant that the third and "fth harmonic components of the response could
be modelled with reasonable accuracy. In all cases, a mass proportional damping factor of
1)0 and a two symmetric mode solution was used. For a selection of cases, the time domain
response of the modal model is compared with the direct integration "nite element method.
The fourth-order Runge}Kutta integration algorithm was used for the modal model, while
the implicit integration routine used in ABAQUS/Standard was a Hilber Hughes Taylor
integration operator [27]. In all cases, a steady state is allowed to develop before the
properties of the vibration are investigated.
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5.1. SIMPLY SUPPORTED BEAM

A loading that is uniformly distributed along the beam and sinusoidally varying in time is
considered for the simply supported beam. The harmonic excitation was of the form

F (t)"500 sin (2nf
e
t). (21)

Here F is the uniformly distributed load, measured in N/m along the beam, and f
e

is the
frequency of excitation. The excitation frequency was varied from 0 to 4)5 times the
fundamental linear natural frequency. The variation in the r.m.s. response level with respect
to excitation frequency is shown in Figure 1. Note the presence of bifurcation or &&jump''
phenomena, where the beam has more than one stable vibration state, depending on the
initial conditions of the vibration. This bifurcation phenomena is characteristic of non-
linear systems with hardening sti!ness non-linearities that are subjected to harmonic
excitations. The response of the simply supported beam is considered in detail at four
excitation frequencies. These are the points (1)}(4) shown in Figure 1.

Figure 2(a,b,c) shows the displacement time history, phase plot, and displacement power
spectral density, respectively, of the simply supported beam at f

e
"10 Hz (approximately

half of the fundamental linear natural frequency). As the beam only vibrates in its
symmetrical modes when subjected to uniform normal pressure excitation, the middle of the
beam is taken as the reference for the displacement response. The modal and complete "nite
element approaches are compared in the phase plot and the time history, and it may be seen
that the response as calculated by the two methods is nearly identical. The frequency
response is composed of both odd and even super-harmonic frequency components, as well
as a component at the excitation frequency. The presence of even frequency components in
such an instance is known as time symmetry breaking non-linearity.

Figures 3}5 correspond to the responses of the beam at 22)5, 56)25 and 90 Hz
respectively. In these "gures the response is dominated by the fundamental frequency
component, especially in Figure 5 where the response is pseudo-harmonic. The response is
only mildly non-linear at this frequency as the displacement amplitude is small, and
therefore there is less axial stretching of the beam.
Figure 1. Root mean square frequency response of the fully simply supported beam.



Figure 2. (a) Displacement time history of the fully simply supported beam response at f
e
+0)5f

1
(10 Hz).

(b) Phase plot of the fully simply supported beam response at f
e
+0)5f

1
(10 Hz). (c) Autopower spectral density of

the fully simply supported beam response at f
e
+0)5f

1
(10 Hz): **, Proposed modal method; ---------, Finite

element method.
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Figure 3. (a) Displacement time history of the fully simply supported beam response at f
e
+f

1
(22)5 Hz).

(b) Phase plot of the fully simply supported beam response at f
e
+f

1
(22)5 Hz). (c) Autopower spectral density of the

fully simply supported beam response at f
e
+f

1
(22)5 Hz):**, Proposed modal method; ---------, Finite element

method.

614 M. I. MCEWAN E¹ A¸.



Figure 4. (a) Displacement time history of the fully simply supported beam response at f
e
+2)5f

1
(56)25 Hz).

(b) Phase plot of the fully simply supported beam response at f
e
+2)5f

1
(26)25 Hz). (c) Autopower spectral density

of the fully simply supported beam response at f
e
+2)5f

1
(56)25 Hz).**, Proposed modal method; ---------, Finite

element method.
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Figure 5. (a) Displacement time history of the fully simply supported beam response at f
e
+4f

1
(90 Hz).

(b) Phase plot of the fully simply supported beam response at f
e
+4f

1
(90 Hz). (c). Autopower spectral density of the

fully simply supported beam response at f
e
+4f

1
(90 Hz).**, Proposed modal method; ---------, Finite element

method.
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Figure 6. Root mean square frequency response of the fully clamped beam.

A COMBINED MODAL/FINITE ELEMENT ANALYSIS 617
5.2. CLAMPED BEAM

A loading that is uniformly distributed along the beam and sinusoidally varying in time is
considered for the fully clamped beam. The harmonic excitation was of the form

F(t)"1000 sin(2nf
e
t). (22)

Here F is the uniformly distributed load, measured in N/m along the beam, and f
e

is the
frequency of excitation. The excitation frequency was varied from 0 to 2)5 times the
fundamental linear natural frequency. The variation in the r.m.s. response level with respect
to the excitation frequency is shown in Figure 6. Again the beam exhibits bifurcation
behavior in the frequency range considered.

Figures 7}10 correspond to the response at the points (5)}(8) shown in Figure 6. The
excitation frequencies are 18)75, 52)5, 78)75, and 105 Hz respectively. At the lowest
frequency considered (18)75 Hz), the response is composed of the fundamental component
plus signi"cant superharmonic components of order 3, 5, etc. At the highest frequency
considered (105 Hz), the response is quasi-harmonic due to the lower level of displacement
amplitude. In all cases there is good agreement between the proposed modal method and
the "nite element method.

5.3. OTHER COMMENTS

The principal advantage of the proposed method is that the #exibility of modelling
arbitrary structures using a proprietary "nite element code is retained, while at the same
time considerable computational expense may be saved in the use of a reduced modal
co-ordinate system. As an example, for an analysis involving 250 000 non-linear time steps,
the solution time is over 360 times less for the proposed modal method when compared to
the direct "nite element method. The time-savings associated with the adoption of the



Figure 7. (a) Displacement time history of the fully clamped beam response at f
e
+0)5f

1
(18)75 Hz). (b) Phase

plot of the fully clamped beam response at f
e
+0)5f

1
(18)75 Hz). (c). Autopower spectral density of the fully clamped

beam response at f
e
+0)5f

1
(18)75 Hz). **, Proposed modal method; ---------, Finite element method.
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Figure 8. (a) Displacement time history of the fully clamped beam at f
e
+f

1
(52)5 Hz). (b) Phase plot of the fully

clamped beam response at f
e
+f

1
(52)5 Hz). (c) Autopower spectral density of the fully clamped beam response at

f
e
+f

1
(52)5 Hz). **, Proposed modal method; ---------, Finite element method.
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Figure 9. (a) Displacement time history of the fully clamped beam response at f
e
+1)5f

1
(78)75 Hz). (b) Phase

plot of the fully clamped beam response at f
e
+1)5f

1
(78)75 Hz). (c) Autopower spectral density of the fully clamped

beam response at f
e
+1)5f

1
(78)75 Hz). **, Proposed modal method; ---------, Finite element method.
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Figure 10. (a) Displacement time history of the fully clamped beam response at f
e
+2f

1
(105 Hz). (b) Phase plot

of the fully clamped beam response at f
e
+2f

1
(105 Hz). (c) Autopower spectral density of the fully clamped beam

response at f
e
+2f

1
(105 Hz). **, Proposed modal method; ---------, Finite element method.
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reduced modal model will become far more dramatic for more complex problems, where
typically many more "nite element degrees of freedom are required.

While the method described in section 2 has only dealt with polynomial-type non-
linearities of a "xed order, the method may be easily extended to enable the consideration of
other types of sti!ness non-linearities. The only non-linear terms considered in the present
work were cubic polynomials, and it was found that using only these non-linear terms
resulted in the most accurate model in any case. For other types of non-linearity than
sti!ening non-linearities, such as clearance non-linearities, it would be more appropriate to
consider using non-polynomial terms in the modal model.

It should also be noted that the proposed method is an approximate method based upon
the "nite element method, which is in itself an approximation of the &&true'' non-linear beam
vibration. The overall quality of the results given by employing this method will be
dependent upon the accuracy of the original static "nite element model used to model the
beam, as well as the degree of truncation in the reduced modal model.

6. CONCLUSION

In this work the "nite element based modal approach of Maymon [9] is extended to
consider multi-modal beam response. The output from a series of static "nite element &&test
cases'' is transformed into modal co-ordinates using the mode shapes of the underlying
linear system. Regression analysis is then performed in order to extract the nonlinear
sti!ness coe$cients in the modal co-ordinate system. Both direct non-linear terms and
non-linear cross-coupling terms may be included in the model. The beam problem can then
be solved for any force}time history in the reduced degree of freedom modal system. The
method is an approximation, and is &&simpli"ed'' from the point of view that considerations
of "nite element formulation and solution are handled by the proprietary "nite element
code, and are not dealt with explicitly by the method. However, the model is genuinely
non-linear, with no linearization attempted.

The proposed method is applied to the case of a homogeneous isotropic beam, with fully
simply supported and fully clamped boundary conditions. For the single mode, free
vibration case, the results show good agreement with those of the literature. For the case of
steady-state harmonic excitation with fully simply supported and fully clamped boundary
conditions, the results compare well with the standard direct integration "nite element
approach, with a signi"cant saving in computational expense. Future work will address
random vibration, modal truncation, and the application of the approach to stress as well as
displacement analysis.
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APPENDIX A: NOMENCLATURE
t time
x spatial co-ordinate along the axis of the beam
[M] assembled "nite element mass matrix
MwN vector of assembled "nite element transverse displacements
a coe$cient of linear mass proportional damping
[K

L
] assembled linear "nite element sti!ness matrix

[K
NL

] assembled non-linear "nite element sti!ness matrix
MFN assembled "nite element force vector
r mode number
N number of degrees of freedom of the assembled "nite element model
NR number of degrees of freedom of the reduced modal model
M/N

r
displacement mode shape vector for mode r

p
r

displacement modal amplitude coe$cient for mode r
[/] displacement mode shape matrix
MpN vector of displacement modal amplitudes
[m] modal mass matrix
[k

L
] linear modal sti!ness matrix

[k
NL

] non-linear modal sti!ness matrix
MfN modal force vector
a
r

component of mode shape &&r'' in the "nite element test case load
A(j,k,l)

r
modal non-linearity coe$cient, pertaining to mode &&r'' involving the coupling of
arbitrary modes j, k, and l

u
Lr

linear natural frequency of mode &&r''
Mf

r
N vector of test case modal forces for mode &&r''

MA
r
N vector of sti!ness coe$cients in modal space for mode &&r''

N¹ the total number of static non-linear test cases
NA the total number of non-linear terms remaining in the model for a particular backward

elimination iteration
[D] the design matrix of the linear least-squares curve "tting procedure
[U] an orthogonal matrix obtained by the singular value decomposition technique
[W] a matrix containing the singular values of the design matrix [D]
[V] an orthogonal matrix obtained by the singular value decomposition technique
R2

T
cumulative goodness of "t parameter

m radius of gyration of the beam cross-section for bending
=

0
amplitude of the beam at the instant of maximum de#ection

f
e

excitation frequency for harmonic excitation
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